Predictive neural networks and fuzzy data fusion for on-line and real-time vehicle detection

نویسنده

  • E. JOUSEAU
چکیده

This article describes an on-line and real-time vehicle detection system. This system detects vehicles passing over magnetic sensors. It works independently of their initial position and of strong magnetic disturbance possibly induced by the load carried on the vehicles. This system is based on the co-operation between a reflective agent, using a reliability measure of its output, and a detection agent (on which this article mainly focus) based on two predictive neural networks and model selection techniques. The fusion of the data delivered by each agent is obtained through fuzzy logic rules. The system is also strengthened to resist substantial magnetic disturbances (even non-periodic ones); it uses the three components of the magnetic field, and is rotational invariant. Furthermore, its modular design opens up many possibilities of evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Nyquist Plots Prediction Using Neural Networks in Corrosion Inhibition of Steel by Schiff Base

The corrosion inhibition effect of N,N′-bis(n-Hydroxybenzaldehyde)-1,3-Propandiimine on mild steel has been investigated in 1 M HCl using electrochemical impedance spectroscopy. A predictive model was presented for Nyquist plots using an artificial neural network. The proposed model predicted the imaginary impedance based on the real part of the impedance as a function of time. The model to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999